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Abstract—The problems of fiat-ended cylindrical, quadrilateral, and triangular punches indenting
a layered isotropic elastic half-space are considered. The former two are analyzed using a basis
function technique, while the latter problem is analyzed via a singular integral equation. Solutions
are obtained numerically. Load-deflection relations are obtained for a series of values of the ratio
of Young's modulus in the layer and substrate, and for a varicty of punch sizes. These solutions
provide an accurate basis for the estimation of Young’s modulus of thin films from the initial
unloading compliance observed in indentation tests, and are specifically relevant to axisymmetric,
Vicker’s, and triangular indenters. The results should also be of interest in foundation engineering.

1. INTRODUCTION

Indentation tests are a promising means of obtaining mechanical property information for
thin films, as is reviewed in detail in Ref.[1]. Loubet et al.[2] suggested that Young’s modulus
can be inferred from an elastic analysis of the initial slope of the unloading portion of a
plot of indentation load as a function of penetration depth, shown schematically in Fig. 1.
This is because even though the specimen has undergone elastic—plastic deformation during
loading, the initial unloading is an elastic event. Assuming that the contact area remains
constant during initial unloading, an approximate elastic solution is obtained by analyzing
a flat-ended punch the area of which in contact with the specimen is equal to the projected
area of the actual punch. Both the assumptions that initial unloading is elastic and that the
contact area remains constant during initial unloading are supported empirically by the
fact that the initial unloading portion of the load vs depth curve is linear: both plasticity
and varying contact area are non-lincar phenomena. A flat-ended punch solution exists for
a circular punch contacting a half-space[3], but not for quadrilateral or triangular punch
shapes. The latter two are more typical of what is used experimentally.
The solution for a circular punch indenting a half-space yields

So = dP/dh = 2r,E, €))
where
1/E, = (1—v})/Eo+(1—V?)/E,

P is the load, 4 the penetration depth, E,, v; and E,, v are Young’s modulus and Poisson’s
ratio for the indenter and substrate (half-space) respectively, and r, is the radius of the
punch. Loubet e? al.[2] and Doerner and Nix[1] suggested using the circular punch solution
and determining ro by equating the area of the cylindrical punch to the actual projected
area. If E,, vy, and v are known, then E, can be inferred from the measured value of S, as
shown in Fig. 1. This estimation will become increasingly inaccurate when applied to thin
films as the ratio of punch size to film thickness, ¢, increases, because of the increasing
importance of the elasticity of the substrate material underlying the film. It was suggested
in Ref.[1] that the influence of the substrate could be accounted for by replacing E, in eqn
(1) with
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Fig. 1. Load as a function of penetration depth in an indentation test.

E, = {(1-v})/E(1— ™)+ (1= V]))/E, e~ + (1 —v})/ Eo} ' @

where the subscripts s and f refer to the substrate and film properties, a is the square root
of the projected contact area, and a is an unknown parameter. In Ref. [1] eqn (2) was
presented based on the indentation depth A. The relation between 4 and a is punch geometry
dependent, so a will be used here instead. An empirically determined value of o was
presented in Ref. [1] based on measurements of tungsten films on silicon substrates.

The solutions presented in this paper form the basis for a more accurate estimation of
Young’s modulus from indentation tests. Solutions for a layered half-space are presented
for circular, square, and triangular punches. The theoretical background is described in
Section 2. Results are presented in Section 3 for circular, square, and triangular punches.
The latter two solutions will provide more accurate results for Vicker’s and triangular
punches than the use of an “effective” circular solution for these geometries, as is illustrated.

Curves showing the influence of substrate elasticity on unloading compliance are
presented. It is shown that eqn (2) is an excellent functional form for describing the influence
of the substrate, and theoretically determined values of « are given.

2. THEORETICAL BACKGROUND

A theoretical procedure for analyzing elastic normal contact problems for layered
media was presented by Chen and Engel{4] and used by the author to study sliding
contact[5]. For a flat-ended punch, the boundary condition at the interface between punch
and half-space is

W(X, }’)+Wo(x, }’) =W (3)

where W is a prescribed displacement remotely applied to the indenter. An efficient numeri-
cal technique is to satisfy eqn (3) in a least squares sense by minimizing

J (W—w—wo)? dA. @)
A

Expanding the unknown pressure distribution at the interface in terms of a series of basis
functions
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p('x! )’) = z bipi(x: }’)

denoting the value of (w+ w,) corresponding to each basis function acting alone as w,, and
substituting in eqn (4) results in the normal equations

Kb =f &)

where
K= J- wiw; d4 and fi= f w,W dA.
A A

A small number of basis functions was found to be needed in practice to yield good accuracy,
and ten-point Gauss quadrature[6] was sufficient for carrying out the integrations. The
choice of basis functions used was p, = 1 /\/ (ri—r%, p, = cos ((i—1)("/2)(r[re)), i=2...
for the axisymmetric case where r, is the radius of the punch. The first basis function is
suggested by the exact solution to a circular punch encountering a half-space, while the
remainder represent a complete set that can represent any arbitrary perturbation to the
half-space solution caused by the presence of the layer. For arbitrary quadrilateral punches
(e.g. the Knoop indenter) the indenter is first mapped to a square extending from
(x, y)= (=1, =1)to (x, ') = (1, 1) and the numerical integration is carried out in the
transformed space with the determinant of the Jacobian of the transformation appearing
in the integrand. This mapping would be necessary to model non-rectangular geometries such
as the Knoop indenter but is not needed for indenters such as the Vicker’s. The pressure is
expanded in a series of functions in x’ multiplied by the same series in )’, with the first
function the same as in the axisymmetric case and the higher order functions given by
p. =1, and p, = cos ((i—2)(nr[2r,)), i odd; p; = sin ((i—1)(nr{2r,)), ieven;i=3.... The
asymmetric (sin) functions are omitted for rectangular punches.

It remains to evaluate the w, for a layered medium. This can be done using the theory
of Burmister for a single layer on a half-space{7] or of Chen for multiple layers[8]. Using
Burmister’s theory, the solution for a point load located a distance r from a field point is

_ ® 1 +4Bk0)tez —B,,B,e4
G = L [1 -—e,(B,+B,,+4Bk(wt)’)+4B,,B,e4] Jo(or) do ©

where e, = e~ >, e, = e}, and B,, B, B, are constants presented in Ref. [7] depending on
E,, v,, E;, v. The term in brackets quickly approaches unity for large w. Letting g be the
integrand in eqn (6)

j g do

is given by

B.,.,/R{x — @t Jo+ g Ooaet(JoH, —J,H.,)}

where B, is the term in brackets in eqn (6) evaluated at wy,, and Jo, J,, H,, H, are
asymptotic forms for the Bessel and Hankel functions evaluated at w,,,r. Equation (6) can
then be efficiently evaluated by numerically integrating up to w,,, and adding on the analytic
expression for high frequencies. In practice, Wa..? = 20 was found to be sufficient.

After tabulating G (r), the w, are evaluated by superposition
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Fig. 2. Quadrature cell numbering in numerical solution of integral equation for triangular punches.

wi(x, y) = Lp;(é, mG(r) d4

where r = \/ ((x—&Y*+(y—mn?). The integral is evaluated numerically using rectangular-
rule quadrature[9]. Care must be taken when r approaches zero. There, an asymptotic
expression is used for G (r) and integrated in closed form as presented in the appendix. For
the axisymmetric case an alternate solution for w; may be obtained by superposition in the
frequency domain as described in Ref. [5]. The two approaches gave the same resuit for w;
within 0.1%, giving confidence in the numerical procedure.

For the case of a triangular punch, the basis function approach was abandoned because
it was not obvious what set of functions would quickly converge. Instead, an integral
equation approach was used. Expressing (w+wy) in terms of G(r) and substituting in the
boundary condition, eqn (3), results in

W= LP(Q mG(r) d4 0

which is a singular integral equation for the unknown pressure p(x, y). This is evaluated
by the rectangular rule, resulting in the discretized equations

N
Y Gp=W (8)
j=1

where N is the number of quadrature cells, and the convention used in numbering the ith
cell is shown in Fig. 2. As in the basis function approach, an analytical expression for

j G(r) d4

is used for small r. Equation (8) is a linear system that is solved for the p;. It is a much
larger system than the equivalent system for the basis function case, eqn (5), which is the
disadvantage of the integral equation approach. To get adequate accuracy (error of less
than 0.5%) in the calculation of load, it was found that approximately 200 integration cells
were needed, requiring about 10 CPU seconds for the evaluation of eqn (8) on an IBM
3081. The load is evaluated after determining the pressure distribution by numerical quad-
rature over the punch area.

3. RESULTS AND DISCUSSION

Solutions for each of the geometries studied were first calculated for the half-space
only. The results may be put in the form
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Fig. 3. Normalized unloading stiffness vs normalized film stiffness for a circular punch.
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Fig. 4. Normalized unloading stiffness vs normalized film stiffness for a square punch.
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Fig. 5. Normalized unloading stiffness vs normalized film stiffness for a triangular punch.

So = BE, /A ©)

where A is the contact area, and J is a numerical factor the value of which is given by

circle, § = 1.129;
square, f = 1.142;
triangle, B = 1.167.

The numerical values of § resulted from the solution procedures described in the previous
section. Note the stiffnesses of these various geometries differ by at most 3%. It should be
of interest in foundation design that the bearing stiffness of a footing is approximately
independent of the shape if the area is fixed. This is similar to the previous result for uniform
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Fig. 6. Results of fitting eqn (10) to the curves in Fig. 5.

bearing load on rectangular regions of various aspect ratios on a half-space[3]: the stiffness
differs significantly from that for a square region only when the aspect ratio exceeds
two. For indentation testing this means that use of eqn (1) to calculate Young’s modulus
for a bulk sample will cause at most an error of 3% for Triangular or Vicker’s indenters.

The effect of indenter shape is more pronounced when a film is present on the substrate.
Results are presented for the circular, square, and triangular punches in Figs 3-5, for
vp = v, = v = 0.3 and Ey/E, = 8. The results are only weakly dependent on Poisson’s ratio.
The value chosen for E/E, is realistic, for example, for a diamond indenter and silicon
substrate. The ordinates are normalized to the results for a substrate with no layer, and a
family of curves of stiffness as a function of E/E, is obtained for various a/r where
a= \/ A and ¢ is the film thickness. The family is bracketed by the limits as a/t — 0o and
ajt — 0. In the former case, the film is vanishingly thin and has no effect so a horizontal
line through S/S, =1 is obtained. In the latter case of very thick films the film elastic
properties dominate and the asymptotic limit is

_ (U=v)/E+(1—v))/E,

SIS0 = T E+ T =v)/Ey’

It is reasonable to expect a smooth transition between these limits, which is the
justification for the parameterization in eqn (2), suggested in Ref.[1]. Based on eqn (2), the
result for §/S; is

(= V3)/Ei+ (1 = v}) o 0
=B =& )+ A —/E, e+ (1 ~v)/E,

S/So =

Values of « were next determined to least-squares fit 5/S, from eqn (10) to the curves in
Figs 3-5. For all cases tested a good fit was provided. Two examples are shown in Fig. 6
for a triangular punch; in both these examples the fitted curve based on eqn (10) is
indistinguishable from the numerical curve. The values of « were found to be dependent on
aft, as shown in Fig. 7. The values for the triangular and square punches were similar but
o for the circular punch is quite different. This is because S/, for the triangular and square
punches is similar (Figs 4 and 5) but somewhat different for the circular punch (Fig. 3),
and « is sensitive to the small changes in the curves in Figs 3-5. An empirically determined
value of 0.25 was presented for o in Ref. [1], based on indentation testing of tungsten films
on a silicon substrate. Equation 2 was based on A/t instead of a/r in Ref. [1]. The measured
depth resuits in Ref. {1] were already corrected for the non-ideal indenter shape, so the
results may be expressed in terms of a/t by using the relation for an ideal pyramidical
indenter geometry, a = 4.95h. The equivalent empirically determined value of o based on
ajt is then 1.24. The data presented in Ref. {1] on which the empirical determination of « was
based covered a range of values of aft, with an average value of g/t of 1.3. Using aft = 1.3
and the least squares fitting procedure described above, an analytically determined value
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Fig. 7. Parameter « as a function of normalized punch size.

of 1.27 was obtained for a. This level of agreement with the theory presented here and
previously reported experimental results is encouraging.

Empirical calibration of « in eqn (10) is a tedious process, and requires that a thin film
with known elastic constants be deposited with thicknesses in the range of interest. This
requires using a material such as tungsten the bulk values of which are well characterized
and assuming that its film elastic properties do not differ from the bulk values. The necessity
for this procedure is eliminated based on the theory presented herein.

To use the theory to calculate E; from measured values of the unloading stiffness S,
the suggested procedure is as follows: calculate S, with eqn (9) and the appropriate value
of § for the punch geometry used based on known values of elastic properties of indenter
and substrate materials. The ratio of S/S, can then be calculated, and the appropriate curve
in Figs 3-5 is chosen based on the known value of a/t, from which E; can be determined.
It should be noted that the curves in Figs 35 are not quite universal, they will be somewhat
dependent on the ratio of Ey/E,. If the actual value of Ey/E, differs from the value of eight
used in producing Figs 3-5, then £ should be solved for using eqn (10) and the appropriate
value of « from Fig. 7. The value of « in eqn (10) was found to be independent of E,/E,.
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APPENDIX. SOLUTION FOR A UNIFORMLY LOADED RECTANGULAR REGION ON A
LAYERED HALF-SPACE

As discussed in the text, numerical quadrature to obtain displacements is inaccurate at small » because the
“Green’s function” G(r) becomes singular. This is alleviated by evaluating the superposition integral in closed
form for small r. G(r) for a half-space is given by the Boussinesq solution which is proportional to 1/r. This is
approached for very small r for the layered half-space. For somewhat larger r where the presence of the substrate
is not totally negligible it is reasonable to approximate G(r) by the same functional form with a different
proportionality constant. Thus G (r) ~ ¢/r where ¢ is determined by least-squares fitting to the numerical evaluated
expression for the layered half-space for small r. The solution for a uniform pressure p, on a rectangle of width
2a and length 2b on a layered half-space for small r is then given by

'a b
w(x, y) = J f o/ J((x=8*+(y—n)?) d¢ dn.

This is a surprisingly tedious integral to evaluate. The result is

_ PACIIR)) S, adf(—n, as)
W ) "’“c{" In [f(az, rn]*“"z In [f(—n, anfar, az)]}

=5,

n=b,

where f(u, v) = u+\/(u’+v’), a,=a-x,a;= —a—x,by=b—y,and b= —b-y.



